Contributed Talk: The Three Stages of Learning Dynamics in High-dimensional Kernel Methods
Speaker: Nikhil Ghosh, UC Berkeley
Talk title: The Three Stages of Learning Dynamics in High-dimensional Kernel Methods
Time: Wednesday, April 6, 1:10pm-1:35pm (ET)
Abstract:
To understand how deep learning works, it is crucial to understand the training dynamics of neural networks. Several interesting hypotheses about these dynamics have been made based on empirically observed phenomena, but there exists a limited theoretical understanding of when and why such phenomena occur.
In this paper, we consider the training dynamics of gradient flow on kernel least-squares objectives, which is a limiting dynamics of SGD trained neural networks. Using precise high-dimensional asymptotics, we characterize the dynamics of the fitted model in two “worlds”: in the Oracle World the model is trained on the population distribution and in the Empirical World the model is trained on a sampled dataset. We show that under mild conditions on the kernel and L2 target regression function the training dynamics undergo three stages characterized by the behaviors of the models in the two worlds. Our theoretical results also mathematically formalize some interesting deep learning phenomena. Specifically, in our setting we show that SGD progressively learns more complex functions and that there is a “deep bootstrap” phenomenon: during the second stage, the test error of both worlds remain close despite the empirical training error being much smaller. Finally, we give a concrete example comparing the dynamics of two different kernels which shows that faster training is not necessary for better generalization.
Joint work with Song Mei and Bin Yu.
Return to workshop schedule